JOM 23436

Organometallic compounds for non-linear optics: synthesis, reactivity and electrochemistry of chiral η^5 -monocyclopentadienyl(nitrile)iron complexes

A.R. Dias^a, M. Helena Garcia^{a,b} and M. Paula Robalo^{a,c}

^a Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisboa Codex (Portugal)

^b Faculdade de Ciências da Universidade de Lisboa, Ed. C1, Campo Grande, 1700 Lisboa (Portugal)

^c Universidade de Évora, Largo dos Colegiais, 2, 7001 Évora Codex (Portugal)

M.L.H. Green, K.K. Lai, Andrew J. Pulham and Stephen M. Klueber

Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (UK)

G. Balavoine

Chimie de Coordination, Université Paris XI, 95405 Orsay (France) (Received August 27, 1992)

Abstract

A new family of compounds of general formula [FeCp ((+)-DIOP)(p-NCC₆H₄R')][PF₆] (R' = donor or acceptor group) was synthesized and characterized for non-linear optical properties. Spectroscopic (IR and ¹H ¹³C and ³¹P NMR) and electrochemical (cyclic voltammetry) studies are consistent with charge-transfer from Fe^{II} to coordinated benzonitrile via $d-\pi^*$ back donation. One compound of this family, [FeCp((+)-DIOP)(p-NCC₆H₄NO₂)][PF₆] has an SHG value 38 times greater than that of urea.

1. Introduction

Recent results [1] have shown that organometallic chemistry is an attractive area for the synthesis of new compounds with non-linear optical (NLO) properties, motivated by relevance to optical device technology [2]. The necessary, but not sufficient, criteria for a material to exhibit large second-order optical non-linearity, are that it should consist of polarizable dipolar molecules and that it should crystallize in a non-centrosymmetric space group.

Our aim has been to improve the SHG properties of organic molecules by coordination to a metal centre. Benzene derivatives with electron-donor substituents such as methoxy and amino at one end and electronacceptor groups such as nitro and cyano at the other [3] are suitable for coordination to our organometallic moieties.

In previous work in this field, we studied complexes $[MCp_2(SR)(p-NCC_6H_4D)][PF_6]$ (M = Mo^{IV} or W^{IV}; R = alkyl or aryl; D = donor group) and found surprisingly low values for second harmonic generation [4]. Nevertheless, spectroscopic and X-ray structural evidence showed higher π -delocalization in the nitriles after coordination and this encouraged us to study a different organometallic partner, $[FeCp(+)-DIOP]^+$, where a chiral ligand ensures the crystallization in a non-centrosymmetric space group. Moreover, to understand whether the organometallic moiety is better as a donor or as an acceptor, two different types of nitriles, p-NCC₆H₄R', were used, where R' is either a donor group as before [4] or a strong acceptor group such as NO_2 . In this last case, the nitrile is quite unusual since both N=C and NO₂ are acceptors groups, the latter being stronger.

Correspondence to: Dr. M.H. Garcia.

2. Chemical studies

2.1. Preparation of the p-substituted benzonitrile complexes, $[FeCp((+)-DIOP)(p-NCC_{b}H_{4}R')][PF_{b}]$

Nitrile complexes were prepared by iodide abstraction from the parent neutral complex [FeCp((+)-DIOP)I] by TlPF₆ in the presence of a slight excess of nitrile in dichloromethane at room temperature. After work-up, orange or red crystals of [FeCp((+)-DIOP)-(*p*-NCC₆H₄R')][PF₆] were obtained in *ca.* 80% yield. The compounds are fairly stable towards oxidation in air and to moisture both in the solid state and in solution. The formulation is supported by analytical data, IR and ¹H, ³¹P, ¹³C NMR spectra (Table 1), as discussed below. The molar conductivities of 10⁻³ M solutions of the complexes in nitromethane, in the range 68–84 Ω^{-1} cm² mol⁻¹, are consistent with values reported for 1:1 electrolytes [5].

Typical IR bands confirm the presence of the cyclopentadienyl ligand ($\approx 3060 \text{ cm}^{-1}$), the [PF₆]⁻ anion (840 and 560 cm⁻¹) and the coordinated nitrile (ν (CN) at $\approx 2200 \text{ cm}^{-1}$). No significant change was observed in ν (CN) upon coordination, except for *p*-NCC₆H₄NO₂ which showed a shift of 35 cm⁻¹ to lower frequency. Such shifts have also been reported for terminal nitrile coordination in benzonitriles and substituted benzonitriles and were explained by a decreased C–N bond order caused by π -bonding between the metal d orbitals and the π^* orbital of the CN group [6]. In contrast, we found a high frequency shift for ν (CN) for *p*-NCC₆H₄R' upon coordination to [MCp₂L]⁺ (M = Mo^{TV} or W^{TV}) fragments, where EHMO calculations have shown that back-donation

TABLE 1. ¹H NMR data for complexes [FeCp((+)-DIOP)(NCR)][PF₆]

$[FeCp((+)-DIOP)(p-NCR)]^{-}$	o(ppm), multiplicity, relative integrals, assignment
$\mathbf{R} = - \left\langle \bigcup_{i_1,\dots,i_n}^{2} \right\rangle_4$	4.27 (s, 5H, η^5 -C ₅ H ₅); 7.38 (t, 2H, H ₃ , H ₅); 7.56 (m, 3H, H ₂ , H ₄ , H ₆)
$-\left\langle \bigcup_{n=1}^{2} \right\rangle^{3}$ CH ₃	2.42 (s, 3H, CH ₃); 4.25 (s, 5H, η^{5} -C ₅ H ₅); 7.27 (d, 2H, H ₃ , H ₅); 7.38 (d, 2H, H ₂ , H ₆)
-OCH3	3.89 (s, 3H, OCH ₃); 4.23 (s, 5H, η^{5} -C ₅ H ₅); 7.08 (d, 2H, H ₃ , H ₅); 7.33 (d, 2H, H ₂ , H ₆)
$-\sqrt{O}$ -NH ₂	4.17 (s, 5H, η^{5} -C ₅ H ₅); 5.91 (b, 2H, NH ₂); 6.68 (d, 2H, H ₃ , H ₅); 7.14 (d, 2H, H ₂ , H ₅)
$-\sqrt{O}$ N(CH ₃) ₂	3.07 (s, 6H, N(CH ₃) ₂); 4.18 (s, 5H, η^5 -C ₅ H ₅); 6.73 (d, 2H, H ₃ , H ₅); 7.14 (d, 2H, H ₂ , H ₆)
$\sqrt[3]{}$ N(CH ₃) ₂	3.04 (s, 6H, N(CH ₃) ₂); 4.13 (s, 5H, η^5 -C ₅ H ₅); 6.04 (d, 1H, H ₈ , ¹ /(H, H) = 16.3); 6.56 (d, 1H, H ₇ , ¹ /(H, H) = 16.3); 6.69 (d, 2H, H ₃ , H ₅); 7.28 (d, 2H, H ₂ , H ₆)
$-\frac{2}{\sqrt{2}} \xrightarrow{3}_{12} \xrightarrow{6}_{12} \xrightarrow{7}_{10} \xrightarrow{7}_{10} \xrightarrow{7}_{10} \xrightarrow{8}_{12}$	4.28 (s, 5H, η^{5} -C ₅ H ₅): 7.48 (m, 3H, H ₇ , H ₈ , H ₉): 7.71 (d, 2H, H ₆ , H ₁₀): 7.85 (d, 4H, H ₂ , H ₃ , H ₁₁ , H ₁₂)
	4.25 (s, 5H, η^{5} -C ₅ H ₅); 7.34 (t, 2H, H ₃ , H ₅); 7.45 (q, 2H, H ₂ , H ₆)
$-\sqrt{O}-NO_2$	4.32 (s, 5H, η^{5} -C ₅ H ₅); 7.65 (d, 2H, H ₂ , H ₆); 8.35 (d, 2H, H ₃ , H ₅)
	4.25 (s, 5H, η^5 -C ₅ H ₅); 6.76 (d, 1H, H ₈ , ¹ <i>J</i> (H, H) = 16.5); 7.03 (d, 1H, H ₂ , ¹ <i>J</i> (H, H) = 16.5); 7.51 (d, 2H, H ₂ , H ₆); 8.29 (d, 2H, H ₃ , H ₅)
$- \underbrace{\langle \bigcirc \rangle}_{j_2 \dots j_1}^{3} - \underbrace{\langle \bigcirc \rangle}_{j_0 \dots j_9}^{6} - \underbrace{\langle \bigcirc \rangle}_{9}^{7} - \operatorname{NO}_{2}$	4.29 (s, 5H, η^5 -C ₅ H ₅); 7.37 (d, 2H, H ₂ , H ₁₂); 7.99 (d, 2H, H ₃ , H ₁₁); 8.01 (d, 2H, H ₆ , H ₁₀); 8.35 (d, 2H, H ₇ , H ₉)

from the metal fragment to the coordinated nitrile would be impossible [7].

The ${}^{1}H$, ${}^{\overline{3}1}P$, ${}^{13}C$ NMR spectra of the (+)-DIOP ligand did not change with nitrile coligand, although there was a significant difference between the spectra of the free and bound nitrile. For instance, the ³¹P NMR spectrum of $[FeCp((+)-DIOP)(p-NCC_6H_4)]$ NH_2 [PF₆] in (CD₃)₂CO at room temperature displayed two doublets at 56.7 ppm, an AB pattern with $J(P_A P_B) = 48.3$ Hz, showing two inequivalent phosphorus atoms, whereas free (+)-DIOP shows a singlet at 26.6 ppm in the same solvent. The ¹H NMR spectrum also showed a significant deshielding of coordinated (+)-DIOP and an obvious inequivalence of CH₂, CH and CH₃ groups. The enhanced deshielding observed for one of the CH₃ groups can be understood if one assumes that the structure of the parent compound [FeCp((-)-DIOP)(I)] is maintained [8] when the iodide is replaced by the substituted *p*-benzonitrile. A molecular model based on tetrahedral geometry at the iron centre and a chair structure for the seven-membered chelate ring of the coordinated phosphine shows two inequivalent methyl groups, one of them close to the benzonitrile ligand current.

Despite the fact that all compounds display sharp signals for the η^{5} -C₅H₅ ring in the narrow ranges 4.13-4.32 and 80.32-81.91 ppm for the ¹H and ¹³C

 ΔC_{p} 0.00 $H_{C_{6}H_{5}}$ 0.00 -1.00 -1.00 -0.50 0.00 0.00 0.50 0.00 0.00 0.50 0.00

Fig. 1. Plot of $\Delta(C_5H_5)$ vs. σ_p for complexes [FeCp((+)-DIOP)(p-NCC₆H₄R)][PF₆]. ($\Delta(C_5H_5) = \delta(C_5H_5)_{R \neq H} - \delta(C_5H_5)_{R = H}$).

NMR spectra, respectively, there is a linear correlation between ΔCp (¹³C NMR) and σ_p Taft parameters ($\Delta Cp = \delta Cp$ (*p*-substituted benzonitrile) – δCp (benzonitrile)), corresponding to the equation $\Delta (Cp) =$ -0.056 + 1.017 σ_p (Fig. 1). These results seem to indicate that if the substituting group increases the donating ability of the nitrile, the iron transmits electron density to the Cp ring, and consequently back-donation is diminished.

TABLE 2. ¹³C NMR data for complexes $[FeCp((+)-DIOP)(NCR)][PF_6]$

Compound [FeCp((+)-DIOP)(p-NCR)] ⁺	δ(ppm), assignment			
$\mathbf{R} = \frac{2}{1} \underbrace{\bigcirc}_{6}^{3} \underbrace{\bigcirc}_{5}^{4} \underbrace{\bigcirc}_{6}$	81.17 (C ₅ H ₅); 111.33 (C1); 129.02 (C3, C5); 130.09 (C2, C6); 132.10 (C4); 136.58 (CN)			
	80.38 (C ₅ H ₅); 97.15 (C1); 114.63 (C3, C5); 133.53 (C2, C6); 142.00 (CN); 152.45 (C4)			
- N(CH ₃) ₂	39.77 (N(CH ₃) ₂); 80.32 (C ₅ H ₅); 95.21 (C1); 111.57 (C3, C5); 133.09 (C2, C6); 139.10 (CN); 153.02 (C4)			
$^{8}_{7}$ N(CH ₃) ₂	39.91 (N(CH ₃) ₂); 80.56 (C ₅ H ₅); 88.04 (C8); 111.64 (C3, C5); 120.78 (C1); 129.17 (C2, C6); 138.78 (CN); 152.10 (C7); 152.67 (C4)			
- F	81.16 (C ₅ H ₅); 107.50 (C1); 117.24 (C3, C5, ${}^{2}J(CF) = 22.8$); 134.14 (C2, C6, ${}^{3}J(CF) = 11.5$); 135.66 (CN)			
	81.91 (C ₅ H ₅); 117.03 (C1); 124.32 (C3, C5); 129.96 (C2, C6); 130.10 (CN); 149.70 (C4)			
	81.46 (C ₅ H ₅); 100.87 (C8); 124.20 (C3, C5); 128.41 (C2, C6); 138.95 (C1); 148.21 (C7); 148.91 (C4)			
$-\frac{2}{1} \underbrace{\sum_{12}^{3} 4}_{12} \underbrace{\sum_{11}^{4} 5}_{10} \underbrace{\sum_{10}^{6} 7}_{9} NO_{2}$	81.35 (C ₅ H ₅); 111.33 (C1); 119.48 (CN); 124.28 (C7, C9); 128.22 (C3, C11); 128.37 (C6, C10); 132.89 (C2, C12); 143.60 (C4); 144.94 (C5); 147.92 (C8)			

This is also consistent with the IR data for ν (CN). Finally, comparison of ¹H and ¹³C NMR data (Tables 1 and 2) for complexes and uncoordinated nitriles (see Experimental section) shows a general trend of shielding of protons H₁ and H₄ after coordination, regardless of whether the substituent is a π -acceptor or a π -donor. The deshielding observed for the carbon of the coordinated N=C functional group is lower for acceptors; this corroborates the postulated increased back-donation inferred from the IR spectra.

3. Electrochemical studies

The electrochemistry of each compound was studied by cyclic voltammetry in dichloromethane and acctonitrile between the limits imposed by the solvents, *i.e.* ca. -1.5 and 1.6 V (Table 3). Tetrabutylammonium hexafluorophosphate was the supporting electrolyte.

The electrochemical behaviour of the family of compounds [FeCp((+)-D1OP)(NCC₆H₄R)]⁺ is characterized by a reversible redox wave attributed to Fe^{II} \rightarrow Fe^{III} oxidation, in the range 0.75–0.91 V, exemplified in Fig. 2.

However, where $R = NH_2$ and $N(CH_3)_2$ the electrochemistry was considerably more complex and, in spite of many experiments, we understand it only partially. [FeCp((+)-DIOP)(*p*-NCC₆H₄NH₂)]⁺ showed anodic processes at $E_{Pa} = 1.310$ V (B) and 1.400 V (C) without corresponding cathodic peaks in addition to the reversible wave at $E_{p/2} = 0.810$ V (A), attributed to Fe^{II} \rightarrow Fe^{III} oxidation. In the very first sweep, peak B appeared as a shoulder on wave C, but 3 h later, a voltammogram of the same solution obtained in the

Fig. 2. Cyclic voltammogram of $[FeCp((+)-DIOP)(p-NCC_6H_4C_6-H_5)][PF_6]$ in CH₃CN containing 0.1 M ⁿBu₄NPF₆ (sweep rate = 200 mV/s).

same experimental conditions showed B as a very intense anodic wave instead of the original shoulder, and wave C ($E_{\text{Pa}} = 1.400 \text{ V}$) had almost disappeared, while the oxidation wave $\text{Fe}^{\text{II}} \rightarrow \text{Fe}^{\text{III}}$ ($E_{\text{p}/2} = 0.810 \text{ V}$) was unaffected.

In the case of $[FeCp((+)-DIOP)(p-NCC_6H_4N-(CH_3)_2]^-$, the behaviour was quite similar, but the two additional waves, B and C, at $E_{p/2} = 1.150$ and 1.390 V, respectively, were reversible (see Table 3). One hour after the very first cycle, the cyclic voltammogram showed clearly that wave C had almost gone, while B was very intense and the first (Fe¹¹ \rightarrow Fe¹¹¹) remained unchanged. The reversibility of this system encouraged us to undertake several chemical oxidation experiments, in order to reproduce the reactions occurring in the electrochemical cell. The product obtained after oxidation with sulphuric acid, showed a cyclic voltam-

Compound	Em	E,	En ->	$E_{\rm max} - E_{\rm max}$	I,	
	(\mathbf{V})	(\mathbf{V})	(V)	(\mathbf{mV})	$T_{\rm a}$	
$\overline{[FeCp((+)-DIOP)(NC-\phi)]}$	0,94	0.85	0.90	9()	1198 No	
$[FeCp((+)-DIOP)(p-NC-\phi-CH_3)]^{+}$	0.90	0.80	0.85	100	1.0	
$[FeCp((+)-DIOP)(p-NC-\phi-OCH_3)]^{\circ}$	0.93	0.82	0.88	110	1.1	
$[FeCp((+)-DIOP)(p-NC-\phi - NH_{\gamma})]^{+}$	0.85	0.76	0.81	90	1.0(5)	
	1.31					
	1,40					
$[FeCp((+)-DIOP)(p-NC-\phi-N(CH_3)_5)]^+$	0.81	0.74	0,78	7()	1.0(4)	
• · · · · ·	1.18	1.12	1.15	60		
	1.43	1.35	1.39	80	0.9(5)	
$[FeCp((+)-DIOP)(p-NC-CH=CH-\phi-N(CH_3)_{\gamma})]^{+}$	0,80	0.71	0.75	90	0.9(5)	
	1.10 1.02 1.06		1.06	80	1.2	
$[FeCp((+)-DIOP)(p-NC-\phi-\phi)]^+$	0,94	0.86	0,90	80	0.9(6)	
$[FeCp((+)-DIOP)(p-NC-\phi-F]^{-1}]$	0.84	0.74	0.79	100	1.0	
$[FeCp((+)-DIOP)(p-NC-\phi-NO_3)]^+$	0.95	0.87	0.91	80	1.1	

TABLE 3. Electrochemical data ^a

^a The electrochemical studies were carried out with CH₃CN solutions containing 0.1 M Bu₄NPF₆. Potentials are referenced to a calomel electrode containing saturated KCI solution. Sweep rates of 200 mV/s were used and the temperature was $20 \pm 2^{\circ}$ C. The solute concentration was generally about 1 mM.

mogram quite similar to that obtained from the solution 1 h after the first cycle, but some problems arose in its characterization. This is still under investigation. However, we hope eventually to understand the overall oxidations, which probably occur on the coordinated nitrile.

The oxidative electrochemistry of $[FeCp((+)-DIOP)(p-NCC_6H_4NO_2)]^+$ showed the highest potential observed for the redox pair $Fe^{II} \rightarrow Fe^{III}$ in the entire family ($E_{p/2} = 0.910$ V). This is in good agreement with IR and ¹³C NMR spectroscopic data above, because release of electron density from the iron(II) centre to the nitrile group via π back-donation should increase the oxidation potential.

4. SHG studies

We have tested for second-harmonic generation of some of the compounds synthesized in this work. The experiments were done with powder samples obtained as described in the Experimental section, without any further grinding, using the Kurtz powder technique. Since all the compounds are red, light from an Nd: YAG laser operating at 1.064 μ m was Raman shifted to 1.907 μ m with a high pressure hydrogen-gas cell. The relative efficiencies of second-harmonic generation (SHG) are summarized in Table 4.

The compound $[FeCp((+)-DIOP)(p-NCC(H)=C-(H)C_6H_4N(CH_3)_2)][PF_6]$ exhibits the highest SHG efficiency, possibly due to the ethenyl group in the nitrile substituent which gives this molecule the most exten-

TABLE 4. Evaluation of SHG

Complex ^a	SHG signal (error $\pm 10\%$) (urea = 1.0)
$[Fe]-N\equiv C-\swarrow NH_2$	0.0 ^b
$[Fe]-N\equiv C-\sqrt{O}-N(CH_3)_2$	0.2
$[Fe]-N\equiv C-\langle O \rangle$	4.2
trans-[Fe] $- N \equiv C $ $N(CH_3)_2$	3.3
$[Fe] - N \equiv C - \langle O \rangle - NO_2$	38.0
trans-[Fe]-N \equiv C-NO ₂	0.0 ^b
$[Fe]-N\equiv C - O - NO_2$	0.0

^a [Fe] = [FeCp((+)-DIOP)]. ^b 1.064 μ m.

sive π -delocalization in the series of amine-substituted organometallics.

The best value of SHG was obtained for $[FeCp((+)-DIOP)(NCC_6H_4NO_2)][PF_6]$, which is 38 times more efficient than urea. This suggests that the [FeCp((+)-DIOP)] fragment, acting as a π donor via $d-\pi^*(NC)$ orbitals towards the NO₂ acceptor group, enhances the hyperpolarizability of the coordinated nitrile giving rise to a large molecular second order hyperpolarizability, which is related to non-linear optical properties.

In contrast to the amine-substituted compounds, the incorporation of the *trans*-ethenyl group in the *p*-nitrobenzonitrile ligand leads to a vanishingly small non-linearity in the compound $[FeCp((+)-DIOP)(p-NCC(H)=C(H)C_6H_4NO_2)][PF_6]$. As reported before [9], we also found that neither the certainty of non-centrosymmetry, nor the enhanced hyperpolarizability of the chiral molecule guarantees large values of non-linearity. This suggests that solid state factors related to crystal symmetry and molecular orientation could be at the origin of small SHG signals.

Crystals are now being grown in order to study the crystallographic structures. This, we believe, may contribute to a better understanding of our system.

5. Experimental details

All experiments were carried out under dinitrogen or argon by use of standard Schlenk techniques. Solvents were purified according to the usual methods [10]. Solid state IR spectra were taken on a Perkin-Elmer 457 spectrophotometer with KBr pellets; only significant bands are cited in the text. ¹H and ³¹P NMR spectra were recorded on a Bruker CXP 300 spectrometer, and ¹³C NMR spectra were recorded on a Varian Unity 300 spectrometer at probe temperature. Microanalyses were performed in our laboratories. Melting points were obtained on a Reichert Thermovar.

The ¹H (acetone- d_6) and ¹³C (chloroform-d) chemical shifts are reported in parts per million downfield from internal Me₄Si and the ³¹P NMR spectra are reported in parts per million downfield from external 85% H₃PO₄.

(+)-DIOP ¹H and ¹³C NMR data are quite similar for all the complexes: ¹H: 0.95 (s, 3H, CH₃); 1.21 (s, 3H, CH₃); 2.51 (m, 4H, CH₂); 3.32 (m, 2H, CH); 7.56 (m, 10H, C₆H₅); 7.71 (m, 4H, C₆H₅); 7.84 (t, 4H, C₆H₅); 8.29 (t, 2H, C₆H₅). ¹³C: 26.42 (CH₃); 26.82 (CH₃); 28.20 (CH₂, ¹J(C, P) = 20.4); 31.16 (CH₂, ¹J(C, P) = 23.2); 74.87 (CH,²J(C, P) = 12.34); 78.20 (CH, ²J(C, P) = 12.34); 108.84 (*C*(CH₃)₂); 128.92–134.10 (aryl CH); 138.67 (C-*ipso*, aryl CH); 141.77 (C-*ipso*, aryl CH). [FeCp((+)-DIOP)I] was prepared following the procedure described previously [11].

5.1. Preparation of $[FeCp((+)-DIOP)(NCR)]/PF_{o}$

All the complexes were prepared by the process described below. To a solution of [FeCp((+)-DIOP)I] (1 mmol) and the appropriate nitrile NCC₆II₄R (2 mmol) in dichloromethane (40 ml) was added TlPF₆ (1 mmol) at room temperature with stirring. The mixture was stirred at room temperature for 12 h. A change was observed from dark-violet to orange with simultaneous precipitation of thallium iodide. After filtration, the solution was evaporated under vacuum to dryness and washed several times with ether to remove the excess nitrile. The residue was recrystallized from dichloromethane/ ether.

[FeCp((+)-DIOP)(NCC₆H₅)][PF₆]: 60% yield, m.p. 188°C (dec.). IR (KBr): ν (CN) 2210 cm⁻¹. Anal. Found: C, 59.60; H, 4.70; N, 1.90. C₄₃H₄₂F₆FeNO₂P₃. calcd.: C, 59.53; H, 4.88; N, 1.61%.

[FeCp((+)-DIOP)(p-NCC₆H₄CH₃)][PF₆]: 90% yield, m.p. 187°C (dec.). IR (KBr): ν (CN) 2220 cm⁻¹. Anal. Found: C, 59.40; H, 5.35; N, 1.62. C₄₄H₄₄F₆Fe-NO₂P₃, calcd.: C, 59.94; H, 5.03; N, 1.59%.

[FcCp((+)-DIOP)(p-NCC₆H₄OCH₃)][PF₆]: 70% yield, m.p. 160–163°C. IR (KBr): ν (CN) 2220, (OCH₃) 1265 cm⁻¹. Anal. Found: C, 58.48; H, 5.38; N, 2.20. C₄₄H₄₄F₆FeNO₃P₃. calcd.: C, 58.87; H, 4.94; N, 1.56%.

[FeCp((+)-DIOP)(p-NCC₆H₄NH₂)][PF₆]: 60% yield, m.p. 157–159°C. IR (KBr): (NH₂) 3490, 3400, ν (CN) 2210 cm⁻¹. Anal. Found: C, 58.30; H. 5.06; N, 3.28. C₄₃H₄₃F₆FeN₂O₂P₃. calcd.: C, 58.52; H, 4.91; N, 3.17%.

[FeCp((+)-DIOP)(p-NCC₆H₄N(CH₃)₂)][PF₆]: 95% yield, m.p. 182°C (dec.). IR (KBr): (N(CH₃)₂) 2960, ν (CN) 2210 cm⁻¹. Anal. Found.: C, 59.39: H, 5.40: N, 3.31. C₄₅H₄₇F₆FeN₂O₂P₃. calcd.: C, 59.35; H, 5.20; N, 3.07%.

trans-[FeCp((+)-DIOP)(*p*-NCC(H)=C(H)C₆H₄N-(CH₃)₂)][PF₆]: 85% yield, m.p. 207–209°C. IR (KBr): (N(CH₃)₂) 2960, ν (CN) 2205, 1610 (CH=CH) cm⁻¹. Anal. Found.: C, 60.82; H, 5.45; N, 3.12. C₄₇H₄₉-F₆FeN₂O₂P₃, calcd.: C, 60.27; H, 5.27; N, 2.99%.

[FeCp((+)-DIOP)(p-NCC₆H₄C₆H₅)][PF₆]: 85% yield, m.p. 168–171°C. IR (KBr): ν (CN) 2220 cm⁻¹. Anal. Found.: C, 60.74; H, 5.06; N, 1.97. C₄₉H₄₆F₆FeN-O₂P₃. calc.: C, 62.37; H, 4.91; N, 1.48%. (The sample loses weight during the manipulations)

[FcCp((+)-DIOP)(p-NCC₆H₄F)][PF₆]: 50% yield, m.p. 152°C (dec.). IR (KBr): ν (CN) 2210 cm⁻¹. Anal. Found.: C, 54.50; H, 4.99; N, 1.41. C₄₃H₃₇F₇FeNO₂P₃. CH₂Cl₂ calcd.: C, 54.45; H, 4.46; N, 1.44%.

 $[FeCp((+)-DIOP)(p-NCC_6H_4NO_2)][PF_6]: 65\%$ yield, m.p. 173°C (dec.). IR (KBr): ν (CN) 2205, (NO₂) 1525, 1340 cm⁻¹. Anal. Found.: C, 56.30; H, 4.72; N, 3.16. $C_{43}H_{41}F_6FeN_2O_4P_3$. caled.: C, 56.59; H, 4.53; N, 3.07%.

trans-[FeCp((+)-D1OP)(p-NCC(H)=C(H)C₆H₄-NO₂)][PF₆]: 65% yield, m.p. 167–169°C. 1R (KBr): ν (CN) 2210, 1625 (CH=CH), (NO₂) 1520, 1340 cm⁻¹. Anal. Found.: C. 57.96; H, 4.88; N, 2.93. C₄₅H₄₃-F₆FeN₂O₄P₃, calcd.: C, 57.58; H, 4.62; N, 2.99%.

[FeCp((+)-D1OP)(p-NCC₆H₄C₆H₄NO₂)][PF₆]: 80% yield, m.p. 190–192°C. IR (KBr): ν (CN) 2210, (NO₂) 1515, 1345 cm⁻¹. Anal. Found.: C. 59.68; H, 4.76; N, 3.09. C₄₉H₄₅F₆FeN₂O₄P₃, caled.: C. 59.53; H, 4.59; N, 2.83%.

5.2. ¹H and ¹³C NMR data for uncoordinated nitriles

$$\mathbf{N} \equiv \mathbf{C} - \underbrace{\left\{ \begin{array}{c} 2 \\ -1 \end{array}\right\}}_{0}^{2} \underbrace{\left\{ \begin{array}{c} -1 \\ -1 \end{array}\right\}}_{0}^{2} \mathbf{R} \\ \mathbf{R} \end{array}$$

NCC₆H₅ (¹H): 7.53 (t, 2H, H₃, H₅); 7.70 (m, 3H, H₂, H₄, H₆). ¹³C: 111.97 (C1); 118.39 (CN); 128.75 (C3, C5); 131.66 (C2, C6); 132.41 (C4).

p-NCC₆H₄CH₃ (¹H): 2.40 (s. 3H, CH₃); 7.37 (d. 2H, H₃, H₅); 7.62 (d. 2H, H₂, H₆).

p-NCC₆H₄OCH₃ (¹H): 3.89 (s, 3H, OCH₃): 7.08 (d, 2H, H₃, H₅): 7.68 (d, 2H, H₂, H₅).

p-NCC₆H₄NH₂ (¹H): 5.55 (b, 2H, NH₂); 6.72 (d, 2H, H₃, H₅); 7.36 (d, 2H, H₂, H₆). ¹³C: 98.88 (C1); 114.07 (C3, C5): 120.22 (CN): 133.38 (C2, C6); 150.67 (C4).

p-NCC₆H₄N(CH₃)₂ (¹H): 3.03 (s, 6H, N(CH₃)₂); 6.75 (d, 2H, H₃, H₅): 7.46 (d, 2H, H₂, H₆). ¹³C: 39.60 (N(CH₃)₂): 96.84 (C1); 111.16 (C3, C5); 120.48 (CN); 133.01 (C2, C6): 152.23 (C4).

trans-p-NCC(H)=C(H)C₆H₄N(CH₃)₂ (¹H): 3.01 (s, 6H, N(CH₃)₂): 5.85 (d, 1H, H₈, ¹J(H₇, H₈) = 17.0); 6.72 (d, 2H, H₃, H₅); 7.35 (d, 1H, H₇, ¹J(H₇, H₈) = 17.0); 7.44 (d, 2H, H₂, H₆). ¹³C: 39.70 (N(CH₃)₂); 88.94 (C8); 111.34 (C3, C5): 119.41 (CN); 121.00 (C1); 128.69 (C2, C6); 150.18 (C7); 151.85 (C4).

p-NCC₆H₄F (¹H): 7.35 (t, 2H, H₃, H₅); 7.86 (q, 2H, H₂, H₆). ¹³C: 108.15 (C1); 116.37 (C3, C5, ²*J*(C, F) = 22.8); 117.59 (CN); 134.33 (C2, C6, ³*J*(C, F) = 9.1); 164.56 (C4, ⁴*J*(C, F) = -255.5).

p-NCC₆H₄NO₂ (¹H): 8.13 (d, 2H, H₂, H₆); 8.43 (d, 2H, H₃, H₅). ¹³C: 116.69 (CN): 118.13 (C1): 124.13 (C3, C5); 133.38 (C2, C6); 149.88 (C4).

trans-p-NCC(H)=C(H)C₆H₄NO₂ (¹H): 6.59 (d. 1H, H₈, ¹J(H₇, H₈) = 16.9); 7.76 (d, 1H, H₇, ¹J(H₇, H₈) = 16.9); 7.97 (d, 2H, H₂, H₆); 8.32 (d, 2H, H₃, H₅). ¹³C: 100.94 (C8); 116.96 (CN); 124.33 (C3, C5); 128.09 (C2, C6); 139.11 (C1); 147.72 (C7); 148.97 (C4).

p-NCC₆H₄C₆H₅ (¹H): 7.48 (m, 3H, H₇, H₈, H₉); 7.69 (d, 2H, H₆, H₁₀); 7.83 (s, 4H, H₂, H₃, H₁₁, H₁₂). *p*-NCC₆H₄C₆H₄NO₂ (¹H): 7.93 (d, 2H, H₂, H₁₂); 7.99 (d, 2H, H₃, H₁₁); 8.16 (d, 2H H₆, H₁₀); 8.35 (d, 2H, H₇, H₉). ¹³C: 112.65 (C1); 118.28 (CN); 124.30 (C7, C9); 128.08 (C3, C6, C10, C11); 132.85 (C2, C12); 143.08 (C4); 145.33 (C5); 147.88 (C8).

5.3. Electrochemical apparatus

The electrochemical instrumentation consisted of a Princeton Applied Research Model 173 potentiometer, a Model 175 voltage programmer, a Model 179 digital coulometer and a Omnigraph 2000 X-Y recorder of Houston Instruments. Potentials were referenced to a calomel electrode containing a saturated solution of potassium chloride. The reference electrode was calibrated using a 1.0×10^{-3} M solution of ferrocene in acetonitrile containing 0.10 M LiClO₄ for which the ferricinium / ferrocene potential was in agreement with the literature value [12]. The working electrode was a 2-mm piece of platinum wire for voltammetry and a platinum gauze for the coulometry experiments. The secondary electrode was a platinum wire coil. Cyclic voltammetry experiments were performed at room temperature in a PAR polarographic cell or in a three-compartment cell equipped with medium porosity glass frits. Solutions studied were 1 mM in solute and 0.1 M in tetrabutylammonium hexafluorophosphate as supporting electrolyte.

The electrolyte was prepared from Bu_4NBr and KPF_6 (both purchased from Aldrich Chemical Co.), recrystallized from acetone/ethanol, washed with diethyl ether, and dried *in vacuo* at room temperature for 24 h. Reagent grade acetonitrile and dichloromethane, were dried over P_2O_5 and CaH_2 , respectively, and distilled before use under an argon atmosphere. A dinitrogen atmosphere was maintained over the solution during the experiment.

Acknowledgements

We gratefully acknowledge the help of Professor Rudolph Herrmann (Technical University of Munich) for recording the ¹³C NMR spectra and for discussions about the data acquired during the visit of M.H. Garcia to the Technical University of Munich, at Garching and supported by Deutscher Akademischer Austauschdienst. Financial support of this work was provided by Junta Nacional de Investigação Científica e Tecnológica through Grant no. BIC 360 (to Maria Paula Robalo) and by Instituto Nacional de Investigação Científica.

References

- (a) M.L.H. Green, S.R. Marder, M.E. Thompson, J.A. Bandy, D. Bloor, P.V. Kolinsky and R.J. Jones, *Nature*, 330 (1987) 360 and refs. therein; (b) B.J. Coe, C.J. Jones, J.A. McCleverty, D. Bloor, P.V. Kolinsky and R.J. Jones, *J. Chem. Soc., Chem. Commun.*, (1989) 1485.
- 2 D.J. Williams, Angew. Chem., Int. Ed. Engl., 23 (1984) 690 and refs. therein.
- 3 (a) A. Dulcic and C. Sauteret, J. Chem. Phys., 69 (1978) 3453; (b) C. Combellas, H. Gautier, J. Simon, A. Thiebault, F. Tournilhac, M. Barzoukas, D. Jusse, I. Ledoux, C. Amatore and J.N. Verpeaux, J. Chem. Soc., Chem. Commun., 44 (1988) 203; (c) C. Amatore, A. Jutand, S. Negri and J.F. Fauvarque, J. Organomet. Chem., 390 (1990) 389.
- 4 M.A.A.F. de C.T. Carrondo, A.R. Dias, M.H. Garcia, P.M. Matias, M.P. Robalo, M.L.H. Green, J. Higgins and Y.Y. Yang, *J. Organomet. Chem.*, 395 (1990) 279.
- 5 W.J. Geary, Coord. Chem. Rev., 7 (1977) 81.
- 6 B.N. Storhoff and H.C. Lewis, Jr., Coord. Chem. Rev., 23 (1977) 1 and refs. therein.
- 7 M.J. Calhorda, M.A.A.F. de C.T. Carrondo, A.R. Dias, A.M.T. Domingos, M.T. Duarte, M.H. Garcia and C.C. Romão, J. Organomet. Chem., 320 (1987) 63.
- 8 G. Balavoine, S. Brunie and H.B. Kagan, J. Organomet. Chem., 187 (1980) 125.
- 9 S.P. Velsko, in S.R. Marder, J.E. Sohn and G.D. Stucky (eds.), Materials for Nonlinear Optics-Chemical Perspectives, ACS Symposium Series 455, American Chemical Society, Washington, DC, 1991.
- 10 D.D. Perrin, W.L.F. Amarego and D.R. Perrin, *Purification of Laboratory Chemicals*, 2nd edition, Pergamon, New York, 1980.
- 11 G. Balavoine, M.L.H. Green and J.P. Sauvage, J. Organomet. Chem., 128 (1977) 247.
- 12 I.V. Nelson and R.T. Iwamoto, Anal. Chem., 35 (1963) 867.